

Heat flux sensors for battery monitoring

greenTEG downsizes battery calorimetry for battery monitoring in any application

greenTEG results: comparable to a \$150K Calorimeter

A gSkin heatflux sensor is: 100 Million times smaller heat flow / mW exo Fraction of the cost • 14 62.31 J 12 greenTEG HFS has: 10 Improved feature resolution Lower noise level • No offset 9.06 J Netzsch MMC27V greenTEG -10.33 J 10 15 charging discharging greenTEG enables battery calorimetry Battery calorimetry on a 45mA coin cell, in the real application cycling speed: 0.5C;

¹Swiss federal institute of material science and technology

Cycling speed: 0.5C; Red: greenTEG sensor Blue: Netzsch MMC27V; Results from EMPA¹

greenTEG - the Seebeck effect explained

greenTEG fabricates thermoelectric sensors which convert heat into a voltage

We see many potential applications, such as thermal runaway prevention

Thermal runaway prevention

Thermal management

Battery quality control

Status control (SOC, SOH, SOF)

Deep dive: Prevent thermal runaway

Problem:

- Inner temperature of the battery should not exceed 60 $^\circ\,$ C
- Inner temperature of the battery can not be monitored with surface temperature sensors

Solution:

Calculate the inner temperature by combing heat flux sensor signal with surface temperature sensor signal

 $T_{inside} = T_{surface} + Q^*R$

R = Thermal resistance Q= Heatflux

We have generated new insights: To know what's going on inside the battery / battery-pack

Surface temperature only measures $48^{\circ}C \rightarrow Everything ok!?$

Our enhanced calculation using heatflux data provides new insights inside the battery

The high Heat flux in combination with the high surface temperature reveals a critical inner battery temperature exceeding 60°C.

Without Heat flux measurement this brief temperature excursion is very difficult to detect

Deep dive: Battery status control and quality control

By thermal profiling

With the gSKIN[®], phase transitions of Liions in the electrodes can be detected during the normal charging and discharging of the battery

The sharpness, amplitude and position of the peak is a clear indication of:

- Quality
- State Of Health (SOH)
- Intracellular electrode dis-balancing

Deep dive: Battery Thermal management

Controlled cooling/heating of the batteries is known to:

- Extend Battery life
- Enable fast charging
- Avoid thermal runaway Today's control is "only" based on temperature sensors

Problem

A temperature sensor is measuring a state and not the dynamics of the system \rightarrow Not the right tool for control systems (slow, overshoot)

Solution

greenTEG's heat flux sensors react immediately to temperature changes larger than 100uK resulting in:

- Much faster thermal control
- Improved thermal management

Reference: Patent on water cooled thermal management system from Tesla

greenTEG's technology allows you to measure the thermal dissipation even when water cooled

We are integration experts

greenTEG provides cost efficient solutions for electrical and thermal integration of the sensors

Specifications:

- Sensor size: 2mm x 2mm x 0.4 mm
- Sensitivity: >1 uV/W/m2
- Required area: 2mm x 2mm x0.5 mm
- Standard SMD integration
- Additional packaging for thermal heat path to the battery is required

