Electro Optical Components, Inc. 5464 Skylane Boulevard, Suite D, Santa Rosa, CA 95403 Toll Free: 855-EOC-6300 www.eoc-inc.com | info@eoc-inc.com # Mid-Infrared (MIR) Photodiode 1.8 - 3.6 μm ## Lms36PD-05-R-PA and Lms36PD-05-RW-PA | Device parameters | Symbol | Value | Units | |-------------------------|-------------------|---------|-------| | Sensitive area diameter | d | 0,5 | mm | | Storage temperature | T_{stg} | -50+80* | °C | | Operating temperature | T _{opr} | 0+50* | °C | | Reverse voltage | operates unbiased | | | | Photodiode parameters | Conditions | Symbol | Value | Units | |-------------------------------|--|-----------------|-------------------------|--| | Cut-off wavelength | T = 25 °C | λ_{cut} | 3.6 - 3.7 | μm | | Max. sensitivity range (>80%) | T = 25 °C | λ_{p} | 2.2 - 3.4 | μm | | Dark current | $T = 25 ^{\circ}\text{C}; V_r = 0.1 ^{\circ}\text{V}$ | I _d | 50 - 1000 | μΑ | | Shunt resistance | T = 25 °C; V_r = 10 mV | R_{sh} | 0.2 - 0,8 | kΩ | | Capacitance | T = 25 °C; $\lambda = \lambda_p$ | С | 600 - 1400 | pF | | Sensitivity | T = 25 °C; $\lambda = \lambda_p$ | S | 1 - 1,5 | A/W | | Noise equivalent power | T = 25 °C; $\lambda = \lambda_p$ | NEP | (3-9)*10 ⁻¹² | W/Hz ^{1/2} | | Detectivity | T = 25 °C; $\lambda = \lambda_p$ | D* | (4.5-14)*10° | cm ⁻ Hz ^{1/2} ·W ⁻¹ | Photodiodes Lms36PD-05 series are fabricated from narrow band-gap InAsSbP/InAs-based heterostructures lattice matched to InAs substrate. All specifications are for photodiode operation at 25°C unless otherwise stated #### Typical spectral response #### Temperature shift of spectral response # Typical current-voltage characteristic ## Capacitance vs. voltage ## Capacitance vs. temperature ## Dark current vs. voltage ## Shunt resistance vs. voltage ## Shunt resistance vs. temperature ## Dark current vs. temperature | Packages | Model | | |--|---------------------|--| | TO-18 with a cap without a glass window | Lms MIR PD-05 | | | TO-18 with a parabolic reflector without a window | Lms MIR PD-05-R | | | TO-18 with a parabolic reflector with a glass window | Lms MIR PD-05-RW | | | TO-5 with a built-in thermocooler and thermoresistor, covered by a cap with a glass window | Lms MIR PD-05-TEM | | | TO-5 with a built-in thermocooler and thermoresistor, covered by a parabolic reflector with a glass window | Lms MIR PD-05-TEM-R | | | PD with a built-in preamplifier; TO-18 with a parabolic reflector without a window in an aliminium tube | Lms MIR PD-05-R-PA | | | PD with a built-in preamplifier; TO-18 with a parabolic reflector with a window in an aliminium tube | Lms MIR PD-05-RW-PA | | #### Mode of operation of photodiode with preamplifier Standard photodiodes work in two modes of operation: photoconductive (with reverse bias) and photovoltaic (with zero bias). When photodiode works in photovoltaic mode it becomes the source of current. Photodiode models with LMSNT preamplifier (-PA) work in photovoltaic mode. Current generated by photodiode is amplified and converted by preamplifier into voltage signal. There is straight correspondence between PD current and resulting output voltage. The signal converted by preamplifier will have the same form, frequency and pulse duration as the photocurrent signal from photodiode. Current into voltage conversion coefficient is constant and depends on given photodiode. **NOTE!** Preamplifier is typically tuned for operation with an emitter working in a pulse mode with 0.5 kHz frequency and 20 µs pulse duration. Tuning for other operation modes is available under special request. #### **Connections:** The output of PD with a built-in preamplifier has four wires: - "+" power input (to the "+" of the power output terminal block of the SDM synchronous detector); - "-" power input (to the "-" of the power output terminal block of the SDM synchronous detector); - output photodiode signal (to the "-" of the signal input terminal block of the SDM synchronous detector); - output photodiode signal (to the "+" of the signal input terminal block of the SDM synchronous detector). For the proper connection mind colours of the wires pointed in the technical data provided with the photodiode. #### **IMPORTANT CAUTIONS:** - please check your connection circuit before turning on the PD; - please do not connect the PD to the multimeter. #### **Technical Drawings** #### Lms36PD-05-R-PA #### Lms36PD-05-RW-PA ## Related products: - LEDs sources of mid-infrared radiation; - SDM synchronous detector for PD models with preamplifiers Lms MIR PD-XX-R-PA and Lms MIR PD-XX-RW-PA. SDM synchronous detector measures the voltage signal from the output of photodiode preamplifier and converts it to the DC voltage signal proportional to amplitude of voltage from input. - TCM thermocontroller for PD models with built-in thermoelectric modules (thermocooler and thermistor) Lms MIR PD-XX-TEM and Lms MIR PD-XX-TEM-R models. TCM enables control and adjustment of PD temperature.