

Electro Optical Components, Inc. 5464 Skylane Boulevard, Suite D, Santa Rosa, CA 95403 Toll Free: 855-EOC-6300

www.eoc-inc.com | info@eoc-inc.com

LED Microsensor NT

MDK-C Evaluation Kit for Methane Detection Instruction Manual

rev. 100815

TABLE OF CONTENTS

Brief overview of the components included	3
Recommended operation mode for the kit	4
Operation instructions	5-7
MDK Layout	8
Precautions	9
Appendices	10
Appendix 1: Lms34LED-CG main parameters	10
Appendix 2: Lms36PD-05-CG main parameters	11
Appendix 3: Drivers Applicable for the MDK Evaluation Kit	12

BRIEF OVERVIEW OF THE COMPONENTS INCLUDED

• Light-emitting diode

Light-emitting diode in TO-18 package with a glass covering with a parabolic reflector (Lms34LED-CG-R model);

For detailed information and set of characteristics please refer to the appropriate LEDs' passports.

• Photodiode with a built-in preamplifier

Photodiode with a glass covering with a built-in preamplifier mounted in an aluminum tube (Lms36PD-05-CG-R-PA models).

PD preamplifier amplifies the current generated by photodiode and converts it into pulse voltage signal. There is straight correspondence between PD current and resulting output voltage, i.e. if the photocurrent from photodiode is a meander, the converted signal will be a meander too with the same frequency and pulse duration.

For detailed information and set of characteristics of photodiodes please refer to the appropriate photodiodes' passports.

• D51/D41/mD-1p LED Driver (depends on customer request)

LED Driver is a power supply for an LED. D41/D51 driver types have a set of adjustable parameters to customise the desired operation mode of an LED. mD-1p driver provides operation at one fixed pulsed mode. For brief information about drivers, please refer to **Appendix 3**. For comprehensive information about the driver please refer to the driver's Instruction Manual.

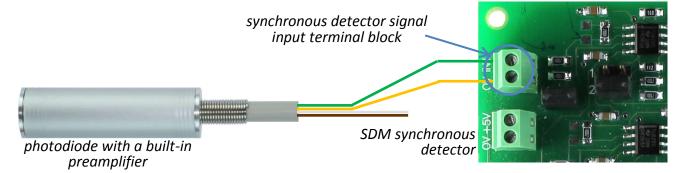
D-51 LED Driver

• SDM Synchronous Detector

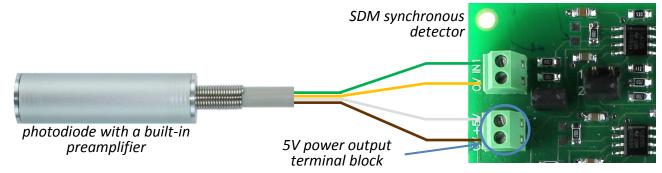
SDM synchronous detector measures the voltage signal from the output of photodiode preamplifier and converts it to the DC voltage signal proportional to amplitude of voltage from input.

For comprehensive information about the synchronous detector please refer to the appropriate Instruction Manual.

SDM Synchronous Detector


RECOMMENDED OPERATION MODE FOR THE KIT

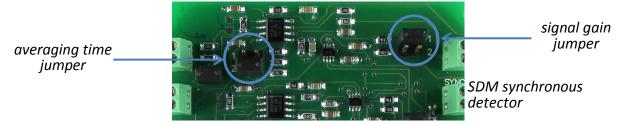
Driver settings (for D-41/D-51 driver types)			
Drive current	I, A	0.2-1	
Pulse duration	τ, μs	10-20	
Frequency	f, kHz	0,5	
Synchronous detector SDM settings			
Signal gain	times	x5	
Averaging time	ms	200	


OPERATION INSTRUCTIONS

1. Connect the preamplifier output with an input of SDM synchronous detector.

Green cord – to the signal input "+"; Yellow cord – to the signal input "0"

2. Connect a 5V power output of the SDM synchronous detector to the preamplifier power input.

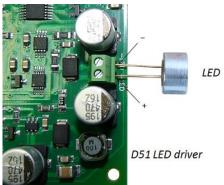

White cord – to the power output "+"; Brown cord – to the power output "0"

Note!

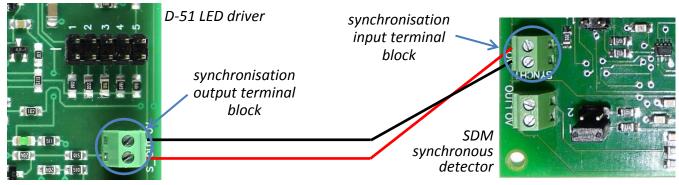
- Please check your connection circuit before turning the PD on.
- Please do not connect the PD to the multimeter.
- Please do not touch the glass covering

- Pay your attention to the colours of the cords; actual colours may differ from ones pointed in the present manual, follow the instructions pointed in the technical data provided with the order.

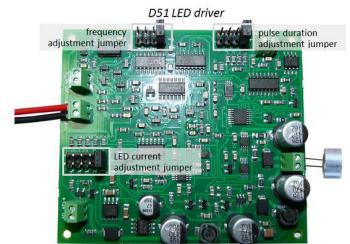
3. Select the needed signal gain and averaging time on the SDM synchronous detector.


Note! You can find out more about adjustment of the signal gain and averaging time in the appropriate SDM synchronous detector manual.

OPERATION INSTRUCTIONS


4. Connect the LED pins to the LED connection terminal block of the LED driver.

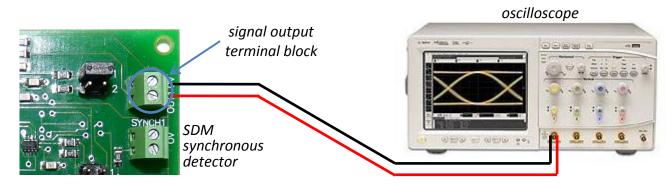
Note! All driver connections in this manual are pointed for D51 LED driver, connections with other drivers should be done similarly.



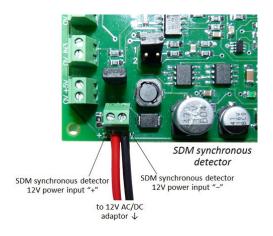
CAUTION! The pin with red dot must be connected to the "+" sign of the driver terminal block.

5. Connect the synchronisation output of the LED driver with the synchronisation input of the synchronous detector via synchronisation cable.

6. Select the needed mode of the LED driver.

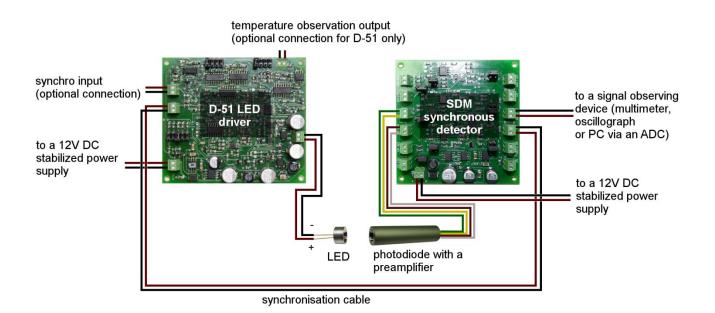


Note! You can find out more about driver modes and their adjustment in the appropriate Driver Instruction Manual.



OPERATION INSTRUCTIONS

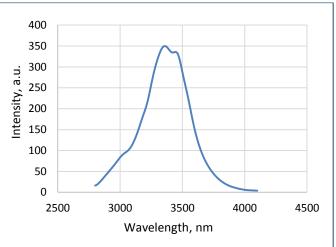
7. Connect signal output terminal block of the SDM synchronous detector with signal observing device (multimeter, oscillograph or PC via ADC).

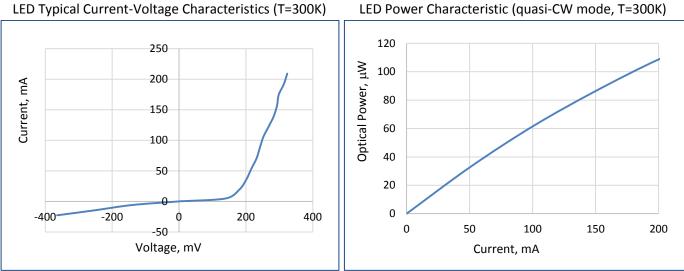

8. Connect a 12V DC stabilized power supply to the LED driver and SDM synchronous detector (red wire to the "+"; black wire to the "-").

MDK-C LAYOUT

PRECAUTIONS & NOTES

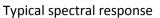
- ▲ Turn on the power supply of the LED Driver and SDM synchronous detector only after all connections are made and tested.
- A Do not switch driver regimes during operation.
- A Do not use multimeter to control and adjust current of the LED.

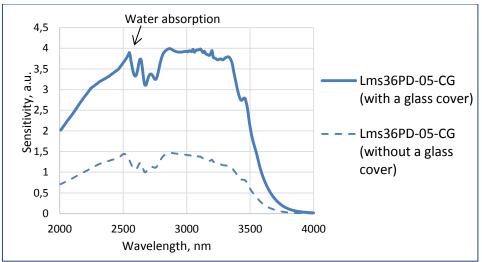

Note! Please refer to your provider if you have any questions.

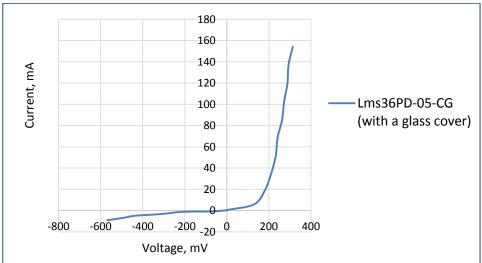

Lms34LED-CG Main Parameters (QCW operation mode, f=0.5 kHz, T=24°C)

Parameters	Units	Conditions	Ratings
Peak emission wavelength	μm	T=300 K, I = 150 mA qCW	3,30 — 3,49
FWHM of the emission band	nm	l = 150 mA qCW	250 — 600
Quasi-CW Optical Power	μW	l = 200 mA qCW	min 80
Pulsed Peak Optical Power	μW	I=1 A, f=1 kHz, duty cycle 0.1%	min 950
Voltage	V	T=300 K, I=200 mA	0,2 — 0,5
Operating temperature	°C	-	-25+50
Package	TO-18 package with a parabolic reflector		

Spectra at 200 mA (qCW, duty cycle 50%, T=300 K)


LED Typical Current-Voltage Characteristics (T=300K)




Lms36PD-05 Main Parameters (T=24°C)

Parameters	Conditions	Symbol	Value	Units
Cut-off wavelength	Т=300 К	λ_{cut}	3.6	mm
Max. sensitivity wavelength (>90%)	Т=300 К	λ_p	2.2 — 3.4	mm
Dark current	T=300 K, Vr=-0,1 V	I _d	0.5 — 1	mA
Shunt resistance	T=300 K, Vr=-10 mV	R_{sh}	0.2 — 0.8	kΩ
Capacitance	Т=300 К, λ=λр	С	600 — 1400	pF
Operating temperature	-	T _{opr}	-25+50	°C
Package	aluminum tube with a parabolic reflector			

Drivers Applicable for the MDK Evaluation Kit

LED driver D-41	D-41 Driver provides Pulse mode operation. Using this mode it is possible to choose one of five current values (0.2, 0.6, 1, 1.5, 1.9 A) and select one of four frequencies (0.5, 2, 8 and 16 kHz) and choose pulse duration within four values (2, 5, 10 and 20 μ s).
LED driver D-51	D-51 Driver has the same characteristics as D-41 but also has another important feature: Temperature control – possibility to define LED p-n junction temperature using current-voltage dependence. Driver generates the low current signal for plugged LED, measures and outputs the voltage. Using the obtained voltage value it is possible to calculate the intrinsic LED temperature.
mD-1p minidriver	mD-1p minidriver works in fixed driving mode: 2 A current, 2 kHz frequency and 5 μs pulse duration.