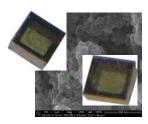
Electro Optical Components, Inc.

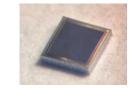
5460 Skylane Boulevard, Santa Rosa, CA 95403 Toll Free: 855-EOC-6300 www.eoc-inc.com | info@eoc-inc.com

WISE' infrared sensing technologies are playing a vital role in creating a healthier, easier and safer tomorrow. WISE has gained worldwide recognition for the design and production of high-performance thermopile detectors with ASIC which contribute to safeguarding homes, saving energy, and providing comfort. From motion and presence detection to gas detection, thermometry and indoor climate control applications, WISE' IR sensing technologies and growing IR product range are meeting your challenges. WISE now offers Thermopile Detectors with ASIC in compact SMD housings.


Containing pre-installed software and specific algorithms is designed for detecting infrared and ambient temperature compensation.

Advantages

Small SMD packaging (2.3 x 3.4 x 1.2mm) with ROIC Smallest Die : 1.0 x 1.0 x 0.3 mm(or 1.6 x 1.6 x 0.3 mm) Self-Temperature compensation High sensitivity High reliability & stability Reasonable price Various sensor packaging : Metal(TO 45), PCB, Ceramic Continuous temperature monitoring Real-time motion detection


Applications

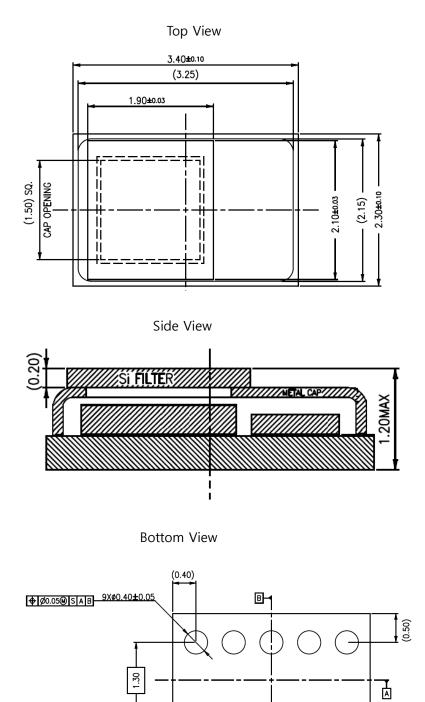
Indoor home safety and security Energy conservation and comfort Home appliances applications Thermometry for healthier Families & Safer industries Non-contact infrared thermometer Motion sensor (light, human, thermal) Internet Of Things applications Consumer appliance: micro-oven, air conditioner, refrigerator, printer, etc.

Click to go to

Product Selector

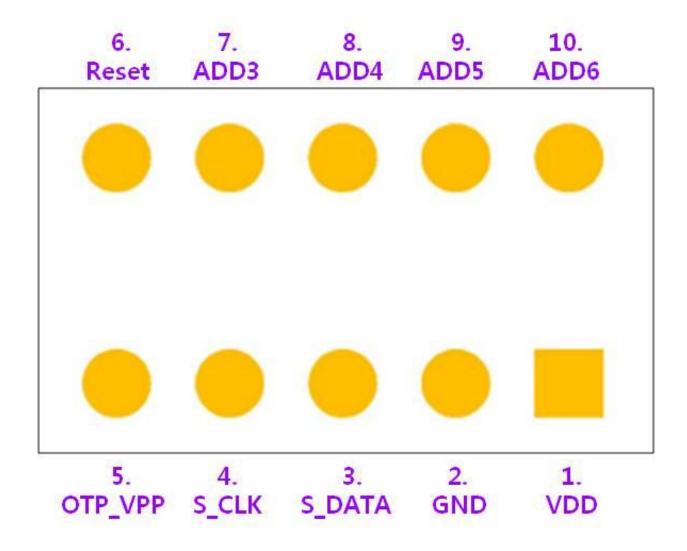
Technical Details of Thermopile Sensor

Parameter	Symbol	AIR111	Unit
Sensor Size	Α	1.0	mm ²
Number of Junctions	Nj	128	ea
Signal Voltage	Ov	12	mV (125°C, 7um cutoff filter)
Active area	Α	0.7*0.7	mm ²
Responsivity	Sv	100	V/W (227℃, 1Hz)
Time Constant	τ	10	ms
Noise Voltage	V _{RMS}	0.02	μVHz ^{1/2}
Detectivity	D*	1.5*10 ⁸	cmHz ^{1/2} /W
Operating Temperature		-10~120	°
Related Humidity		5~95	%RH


Electrical Characteristics(With ASIC)

Parameter	Condition	Min	Тур	Max	Units
Supply Voltage	3V connection	2.4	3.3	3.7	V
Supply current			1		mA
ambient temperature range		-40		120	°C
Storage temperature range		-40		125	°C
Object temperature range		-30		500	°C
Ambient operating humidity		15		85	%RH
Temperature Resolution	0.1				°C
Filter	Si(AR Coating)	C	Cut on	5.5um	
		Wavele	ngth 7	.5 to 1	3.5um
Filter Transmission		70			%
Field of View			110		0
Maximum soldering profile	Reflow soldering	280°C for 30s			

The package is compatible with SMD assembly process. AIR111 has Si(0.2mm) Filter.



0.65

Datasheet for AIR Series

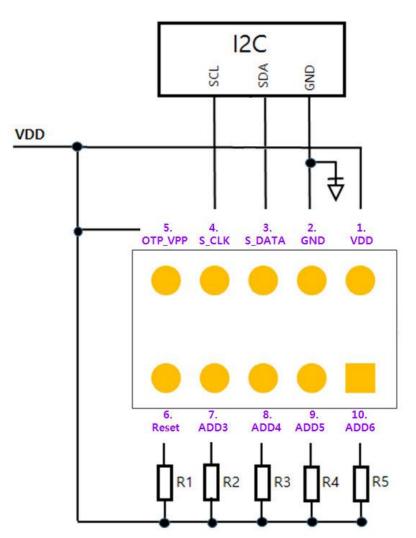
AIR111 has 10 pins and it's description is as following table.

WISE Control IR Sensor

ROIC Bottom view

WISE Control IR Sensor

WISE®


Pin Number	Name	Description	Input Voltage Min (V)	Input Voltage Max (V)
1	VDD	Analog power supply voltage	2.4	3.6
2	GND	Analog power supply ground	0	
3	S_DATA	I ₂ C Data Line	-	3.3
4	S_CLK	I ₂ C Clock Line	-	3.3
5	OTP_VPP	OTP driving power	3.	3
6	RESET	ROIC reset pin	0 or	3.3
7	ADD3	Sensor address setting pin	0 or	3.3
8	ADD4	D4 Sensor address setting pin 0 or		3.3
9	ADD5	Sensor address setting pin 0 or 3		3.3
10	ADD6	Sensor address setting pin 0 or		3.3

Pin Function Description

Pin No.	Mnemonic	Function
1	VDD	ROIC Driving Power
		Input 3.3 V
2	GND	Common Ground
		VDD GND, I2C GND, OTP GND, RESET GND, ADDx GND
3	S_DATA	Data Line of I2C Communication
4	S_CLK	Clock Line of I2C Communication
5	OTP_VPP	OTP Driving Power
		ROIC Calibration Data is stored in OTP
		Need to Copy OTP data to Register after ROIC operation
		Driving power supply required for OTP when copying data to Register
6	RESET	ROIC Hardware Reset Pin
		Reset at 0V
7	ADD3	Address Setting Pin
		I2C Address ($0x1x \sim 0xFx$) can be set by power input control to ADD3 ~ 6 Pin
		Input 0 V : Low signal
		Input 3.3 V : High signal
		Address MSB Pin : ADD3
		Address LSB Pin : ADD6
8	ADD4	Same as ADD3
9	ADD5	Same as ADD3
10	ADD6	Same as ADD3

WISE Control IR Sensor

Reference Diagram

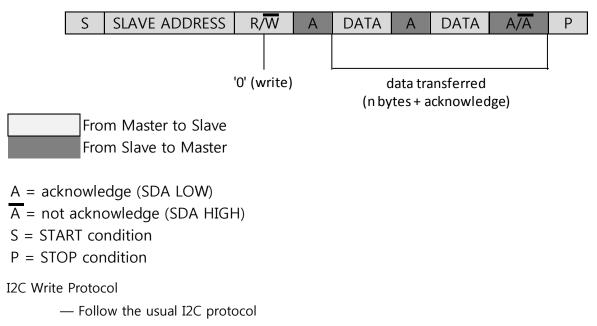
Example Circuit Components : Set to Address 15(0xFx)

ROIC Pin Assign				
Component	Value	Remarks		
R1	10KΩ	Pull-up resistor for RESET		
R2	10KΩ	Pull-up resistor for ADDRESS 3		
R3	10ΚΩ	Pull-up resistor for ADDRESS 4		
R4	10KΩ	Pull-up resistor for ADDRESS 5		
R5	10ΚΩ	Pull-up resistor for ADDRESS 6		

I2C Communication

According to the concept in IoT, ROIC provides I2C interface.

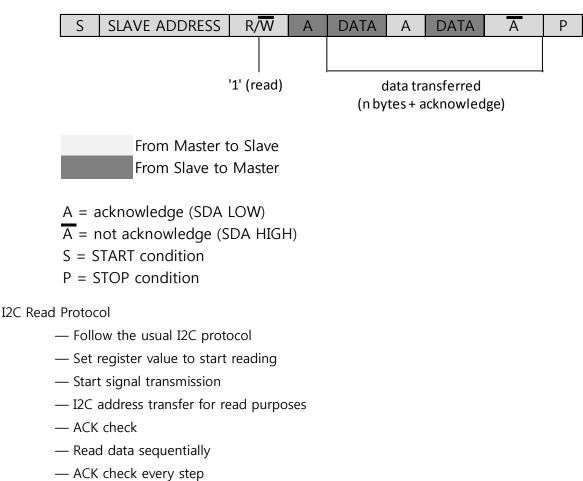
Address Setting At I2C ADD Part


7		6	5	4	3	2	1	0
I2C_A	DD6	I2C_ADD5	I2C_ADD4	I2C_ADD3	0	0	0	R/W

Configuring Addresses on the I2C Protocol

I2C Address Setting

- ROIC supports I2C Communication
- To access ROIC set in circuit, you need to set address on I2C Protocol
- Unlike general I2C address configuration, Bit 1 ~ 3 are not used
- Bit 0 is set according to Read / Write purpose as in I2C standard
 - 0 : Write signal
 - 1 : Read signal


I2C Write Protocol

- Start signal transmission
- I2C address transfer for write purposes
- ACK check
- Data transmission
 - 1st Data: Call Start Register Address
 - 2nd Data: Data to be stored in the register located consecutively starting from the corresponding register address
- Transmission of stop signal after completion of transmission

I2C Read Protocol

- ACK CHECK EVELY SIE
- NACK transmission
- STOP transmission

ROIC Register

ROIC has a register which is a data storage space.

ROIC Register Map

Regi	ster	0	ГР							
Add	ress	Add	ress	Read/	Name	Description				
MSB	LSB	MSB	LSB	Write	Hume					
5	6	5	6	RW	ANALOG_CNTL_0					
						FREQ<1:0> FREQ_DSP EN_OSC				
71	70	-		R	TEMPERATURE_OUTPUT	TEMPERATURE(℃) = TEMPERATURE_OUTPUT / 256				
75	74	-		R	IR_OUTPUT	$IR(^{\circ}C) = IR_OUTPUT / 128$				
7	6	-		R	STATUS	EN_IR EN_TEMP PEN OTP_RD OTP_WR PROG PTM				
7	6	-		W	COMMAND	0 : initialize ROIC (OTP to Register) 1 : restart ROIC 6 : write data to OTP 7 : read data from OTP 8 : stop ROIC				

Register Map Description

- There are two kinds of storage devices in ROIC

— OTP

- Calibration data is stored
- Write once (impossible to write after)
- Similar to ROM (Read Only Memory)
- Nonvolatile Data

— Register

- Storage space of ROIC internal calculation result
- Initialization to copy OTP data to Register after inputting drive voltage to VDD
- Similar to RAM (Random Access Memory)
- Volatile Data

- Each register size is 8 bits (1 byte)

Register	Function	Description
Register 56	FREQ	AFE Clock selection
		2 bit configuration
		Requires 0x08 setting at ROIC Initialization
		(see. ROIC Initialize Sequence)
	FREQ_DSP	Digital Signal Process Clock selection
		1 bit configuration
		Requires high setting at ROIC Initialization
	EN_OSC	Internal VCO enable
		1 bit configuration
		Requires high setting at ROIC Initialization
Register 70, 71	Temperature Output	Temperature Sensor Output
		2 bytes
		16 bit Signed Integer (-32768 ~ 32767) / 256
		= Current temperature (°C)
		R available (W not available)
Register 74, 75	IR Output	IR Sensor Output (Not supported)
		2 bytes
		16 bit Unsigned Integer (0 ~ 65535)
		R available (W not available)

Register Function Description

Register 76	Write(Read)	cmd 0 : Copy OTP Data to Register
		cmd 1 : Restart ROIC
		cmd 6 : OTP Write Command
		cmd 7 : OTP Read Command
		cmd 8 : Stop ROIC

ROIC Initialize

Initialization is required to use ROIC after driving power input

Write the following data in the Register described below (Register No. 56, 76)

ROIC Initialize Sequence

Sequence No.	Register No.(Hex)	Register Data Hex Value Function Hex Value
		PREQ (AFE Clock selection) : 0x08
1	56 (0x38)	OxOB PREQ_DSP (DSP Clock selection) : 0x02 1 0 1 1
		EN_OSC (Internal VCO enable) : 0x01
2	76 (0x4C)	0x00 Cmd 0 : 0x00 0 0 0 0 0 0 0 0 0