

Low Crosstalk Acetylene (C₂H₂) and Ethylene/Ethene (C₂H₄) Sensors

6/2020

The gas detection industry use ETO sensor to detect Acetylene and Ethylene (Ethene). The problem using ETO sensors is that they don't have good selectivity. They react to many other gases. See the comparison below.

If selectivity is an issue, the SemeaTech Acetylene (C_2H_2) and Ethylene / Ethene (C_2H_4) sensors are way better. No comparison in the technology.

Cross-Sensitivity Comparison between SemeaTech Acetylene C2H2 Sensor and a
Typical ETO Sensor

	Concentration	SemeaTech C2H2	Typical ETO Sensor	
		Crosstalk (ppm)	Crosstalk (ppm)	
Carbon Monoxide	100	<1	125	
Hydrogen Sulfide	50	<1	55	
Sulfur Dioxide	10	<1	3	
Nitric Oxide	50	<1	80	
Formaldehyde	10	<1	6	
Ammonia	50	0	5	
Ethylene	100	<1	80	
Vinyl Chloride	100	<1	130	
Ethanol	200	<1	400	
Hydrogen	400	<1	200	