
Electro Optical Components, Inc.
5464 Skylane Boulevard, Suite D, Santa Rosa, CA 95403

Toll Free: 855-EOC-6300
www.eoc-inc.com | info@eoc-inc.com

Rev 0.2

Xavitech V100

Technical Data
 Min Typical Max
Supply Voltage (V100-12V) - 12 V -
Supply Voltage (V100-5V) - 5 V -
Flowrate - 200 ml/min -
Vacuum - 300 mbar -
I2C logic levels - 2.8 V 3.3 V
I2C speed grade - 100 kbit/s 400 kbit/s
VCC Capacitor (V100-12V) 100μF, 16V - -
VCC Capacitor (V100-5V) 47μF, 10V - -

Electrical Interface

Pull-up resistors are needed for the I2C communication lines. Suitable values depend on the bus
capacitance. Some master devices have built-in pull-up resistors. A Raspberry Pi for example has 1.8
kOhm resistors installed.

Logic levels are 2.8 V (max 3.3 V).

A Capacitor parallel to the power supply is recommended to reduce power spikes generated by the
electromagnet pump motor. An adapter board with capacitor is sold separately.

Red – VCC
Black – GND
White – IO
Green – SCL (I2C clock)
Blue – SDA (I2C data)

Rev 0.2

Xavitech V100

Technical Data
 Min Typical Max
Supply Voltage (V100-12V) - 12 V -
Supply Voltage (V100-5V) - 5 V -
Flowrate - 200 ml/min -
Vacuum - 300 mbar -
I2C logic levels - 2.8 V 3.3 V
I2C speed grade - 100 kbit/s 400 kbit/s
VCC Capacitor (V100-12V) 100μF, 16V - -
VCC Capacitor (V100-5V) 47μF, 10V - -

Electrical Interface

Pull-up resistors are needed for the I2C communication lines. Suitable values depend on the bus
capacitance. Some master devices have built-in pull-up resistors. A Raspberry Pi for example has 1.8
kOhm resistors installed.

Logic levels are 2.8 V (max 3.3 V).

A Capacitor parallel to the power supply is recommended to reduce power spikes generated by the
electromagnet pump motor. An adapter board with capacitor is sold separately.

Red – VCC
Black – GND
White – IO
Green – SCL (I2C clock)
Blue – SDA (I2C data)

http://www.eoc-inc.com
mailto:info%40eoc-inc.com?subject=info%20request%20from%20PDF
/micro-pumps-ndir-gas-sensor-modules/
/micro-pumps-ndir-gas-sensor-modules/

Rev 0.2

Adapter board

I2C Communication
I2C communication works with both standard mode: 100 kbit/s and full speed: 400 kbit/s.

The standard 7-bit address is 0x4A (74).

The I2C protocol is either sending or receiving 9 bytes of data plus a checksum. The first 9 bytes are
reserved for values, usually 1, 2 or 4 bytes are used for setting or read a value. During a write
operation a command byte is also sent, which gives a total of 11 bytes, please see example.

The checksum is calculated like this: 256 – mod(byte 1 + byte 2 + … + byte 9) Another way of
describing it is: All bytes including the checksum should add up to zero if you use an unsigned 8-bit
integer and let it roll-over. This means that checking is easy, just add all the numbers and check if
they add to zero.

Write Operation
Master: I2C write address + 11 bytes. The 11 bytes consist of Command Number (1 byte) and Data
(10 bytes including checksum)

[I2C address + Write], [Command], [Data 1], [Data 2], […], [Data 10]

Arduino example:
// Set user frequency to maximum
uint8_t bytesToSend[] = {29,255,3,0,0,0,0,0,0,0,225};

Wire.begin();
Wire.setClock(100000);

Wire.beginTransmission(0x4A); // Begin transmission (address: 0x4A)
Wire.write(bytesToSend,11); // Write the bytes
Wire.endTransmission(); // End transmission

Raspberry Pi example using C++ and bcm2835.h:
// Set user frequency to maximum
uint8_t bytesToSend[] = {29,255,3,0,0,0,0,0,0,0,0,225};

bcm2835_i2c_begin(); //Start I2C operations.
bcm2835_i2c_setSlaveAddress(0x4A); //I2C address
bcm2835_i2c_set_baudrate(100000); //baud rate

bcm2835_i2c_write((char*)bytesToSend,11); // Write the bytes

bcm2835_i2c_end(); // End transmission
bcm2835_close();

Rev 0.2

Read Operation
Master: I2C write address + 1 byte (Command Number).

[I2C address + Write], [Command]

Master: I2C read address

[I2C address + Read]

Slave: 10 bytes of data including checksum.

[Data 1], [Data 2], […], [Data 10]

Arduino example:
// Get user frequency
uint8_t bytesToReceive[10];
uint8_t command = 29;

Wire.begin();
Wire.setClock(100000);

Wire.beginTransmission(0x4A); // Begin transmission (address: 0x4A)
Wire.write(&command,1); // Write the command byte
Wire.endTransmission(); // End transmission

Wire.beginTransmission(0x4A); // Begin transmission (address: 0x4A)
Wire.requestFrom(0x4A, 10); // Request 10 bytes of data

uint8_t counter = 0;

while(Wire.available() || counter < 10) // While bytes available, read bytes
{
 bytesToReceive[counter] = Wire.read(); // Read byte
 counter++;
}

Wire.endTransmission(); // End transmission

Raspberry Pi example using C++ and bcm2835.h:
// Get user frequency
uint8_t bytesToReceive[10];
uint8_t command[1] = {29};

bcm2835_i2c_begin(); //Start I2C operations.
bcm2835_i2c_setSlaveAddress(0x4A); //I2C address
bcm2835_i2c_set_baudrate(100000); //baud rate

bcm2835_i2c_write((char*)command,1); // Write the command byte
bcm2835_i2c_read(bytesToReceive,10); // Read 10 bytes

bcm2835_i2c_end(); // End transmission
bcm2835_close();

Rev 0.2

Commands
Commands can generally be temporary settings or stored. To store a setting add 64 (0x40) to the
command number while writing the command.

User Frequency
Command number: 29 (store: 93)

Value: 0-1023 (10 bits). 2 bytes are needed, LSB to MSB. Max value (1023) corresponds to calibrated
value. 1 corresponds to lowest possible setting and 0 will turn the pump off.

Revision History
0.1 First revision
0.2 Fixed error in communication structure. Values are sent LSB first, not MSB first.

