

Electro Optical Components, Inc. 5464 Skylane Boulevard, Suite D, Santa Rosa, CA 95403 Toll Free: 855-EOC-6300 www.eoc-inc.com | info@eoc-inc.com



# DOAS (Differential Optical Absorption Spectroscopy) / NDUV Mudule-H2S Specification



## 1. Principle

DOAS (Differential Optical Absorption Spectroscopy) is a well-established principle for gas concentration measurements. DOAS module is based on the principle of ultraviolet absorption, using optical principles and non-contact measurement. It is based on the principle of ultraviolet and passes inspectionMeasure the unique absorption spectrum of the gas to make accurate quantitative analysis and calculate its concentration value



Figure 2. The responses of gas reading under different circumstances

# 2. Technical Data

| Tec                                   | Technical indicators (customer customized version) |  |  |  |  |  |
|---------------------------------------|----------------------------------------------------|--|--|--|--|--|
| Detect gas                            | H2S                                                |  |  |  |  |  |
| Sampling method                       | Flow                                               |  |  |  |  |  |
| sensor type                           | DOAS                                               |  |  |  |  |  |
| Range                                 | 0-20ppm                                            |  |  |  |  |  |
| Measurement error                     | ±2%F.S.                                            |  |  |  |  |  |
| Limit of detection                    | 0.1PPM                                             |  |  |  |  |  |
| Response time <b>(T<sub>90</sub>)</b> | ≤20s                                               |  |  |  |  |  |
| Output signal                         | RS232                                              |  |  |  |  |  |
| Ventilation flow rate                 | 1~1.5L/min                                         |  |  |  |  |  |
| Housing material                      | Sheet Metal                                        |  |  |  |  |  |
| Tracheal interface size               | 4/6mm                                              |  |  |  |  |  |
| Supply Voltage                        | 12v±1v, Current>500mA                              |  |  |  |  |  |
| Working current                       | Normal operation: not greater than 200mA           |  |  |  |  |  |
|                                       | Impulse current: not exceeding 300mA               |  |  |  |  |  |
| weight                                | <2kg                                               |  |  |  |  |  |
| size                                  | 350mm* 110mm* 110mm (Based on the actual product)  |  |  |  |  |  |





www.eoc-inc.com | Page 3 | info@eoc-inc.com

## 3. Operating instructions

### 3.1 Operation condition

It needs to be operated in a dry and dust-free condition, and installed in a nearby place where there should be no heat source or strong magnetic field generated by electrical appliances (such as electric motors, transformers). It should be noted that it is necessary to avoid liquid infiltration.

#### 3.2 Installation guidance

It is necessary to ensure that the sensors at the installation location are not affected by high humidity (condensation), extreme temperature fluctuations, mechanical loads (such as vibration), dust, and dirt. Under no circumstances should the sensor (or its components) come into contact with water or other liquids! If the sensor is installed near the airflow generated by mechanical or natural ventilation, the module must not be located in strong convection!

## 3.3 Interface definition and indicator light description



|                | Power interface pin description |                     |  |  |  |
|----------------|---------------------------------|---------------------|--|--|--|
| Circuit board  |                                 | Bl                  |  |  |  |
| Connector      | 1                               | Positive pole       |  |  |  |
| interface pins | 2                               | Negative pole (GND) |  |  |  |
|                |                                 |                     |  |  |  |

|                | RS232 interface pin description |          |  |  |
|----------------|---------------------------------|----------|--|--|
| Circuit board  |                                 | J11      |  |  |
|                | 1                               | RS232 TX |  |  |
| Connector      | 2                               | GND      |  |  |
| interface pins | 3                               | RS232 RX |  |  |

|                | RS485 interface pin description |                                      |  |  |
|----------------|---------------------------------|--------------------------------------|--|--|
| Circuit board  |                                 | J13                                  |  |  |
| Connector      | 1                               | A/Y (Differential signal - in-phase) |  |  |
| interface pins | 2                               | B/Z (Differential Signal - Inverted) |  |  |

Use the module according to its mechanical structure and electrical interface, connect the module inlet and outlet, and note that the pressure sensor is usually located at the outlet;

J9 is connected to the power supply line, and the other end is connected to a DC power supply. Red represents the positive pole, and black represents the negative pole;

#### 3.4 Communication interface

Supports two communication interfaces, RS485 and RS232, and users can choose one communication interface for communication according to their needs. Note: Only one option can be selected for communication. The module adopts a Modbus ASCII or Modbus RTU format communication protocol, with a default Modbus address of 0x2A.

| BAUD       | Start bit | Data bits | Stop bit | Parity check      | Communication mode |
|------------|-----------|-----------|----------|-------------------|--------------------|
| 115200 bps | 1 bit     | 7 bits    | 1 bit    | even parity check | Modbus ASCII       |
| 115200 bps | 1 bit     | 8 bits    | 1 bit    | even parity check | Modbus RTU         |

# 3.5 Register list

| Register address           | Register Description                                                                                                                  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 0x0017 (read-write)        | ModBus address, when the default address is changed, can only communicate with the module through the new address                     |
| 0x0030 (write-only)        | During zero point calibration, this register must be set to 0x01                                                                      |
| 0x0031 (read only)         | Flag for whether zero calibration is completed (1 represents zero calibration completed; 0 represents zero calibration not completed) |
| 0x0032-0x0033 (read-write) | SO2 range calibration coefficient high order                                                                                          |
| 0x0034-0x0035 (read-write) | SO2 range calibration coefficient low order                                                                                           |
| 0x0036-0x0037 (read-write) | NO2 range calibration coefficient                                                                                                     |
| 0x0038-0x0039 (read-write) | NO range calibration coefficient                                                                                                      |
| 0x003A-0x003B (read-write) | High order H2S range calibration coefficient                                                                                          |
| 0x003C-0x003D (read-write) | H2S range calibration coefficient low order                                                                                           |
| 0x004D—0x004E (read only)  | Pressure sensor value                                                                                                                 |
| 0x004F (read only)         | Module status, specific meaning can be found in the module status description tab                                                     |
| 0x0050-0x0051 (read only)  | SO2 concentration value (in mg/m3)                                                                                                    |
| 0x0052-0x0053 (read only)  | NO2 concentration value (in mg/m3)                                                                                                    |
| 0x0054-0x0055 (read only)  | NO concentration value (in mg/m3)                                                                                                     |
| 0x0056-0x0057 (read only)  | H2S concentration value (in mg/m3)                                                                                                    |
| 0x0060 (read only)         | SO2 high range (in mg/m3)                                                                                                             |
| 0x0061 (read only)         | SO2 low range (in mg/m3)                                                                                                              |
| 0x0062 (read only)         | NO2 range (in mg/m3)                                                                                                                  |
| 0x0063 (read only)         | NO range (in mg/m3)                                                                                                                   |
| 0x0064 (read only)         | High range H2S (in mg/m3))                                                                                                            |
| 0x0065 (read only)         | Low range H2S (in mg/m3)                                                                                                              |
| 0x007D—0x007E (read only)  | Pressure sensor value (backup group, choose one from two when using)                                                                  |
| 0x007F (read only)         | Module status, specific meaning can be found in the module status description table (backup group, choose one or two when using)      |
| 0x0080-0x0081 (read only)  | SO2 concentration value (in ppm)                                                                                                      |
| 0x0082-0x0083 (read only)  | NO2 concentration value (in ppm)                                                                                                      |
| 0x0084-0x0085 (read only)  | NO concentration value (in ppm)                                                                                                       |
| 0x0086-0x0087 (read only)  | H2S concentration value (in ppm))                                                                                                     |
| 0x0090 (read only)         | SO2 high range (in ppm)                                                                                                               |
| 0x0091 (read only)         | SO2 low range (in ppm)                                                                                                                |
| 0x0092 (read only)         | NO2 range (in ppm)                                                                                                                    |
| 0x0093 (read only)         | NO range (in ppm)                                                                                                                     |
| 0x0094 (read only)         | High range H2S (in ppm)                                                                                                               |
| 0x0095 (read only)         | Low range H2S (in ppm)                                                                                                                |

## 3.6 Module Status

|           | Status register |        |                                                              |                                                                               |                                                                                                                                                               |                        |            |            |             |           |           |                    |            |            |        |
|-----------|-----------------|--------|--------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|------------|-------------|-----------|-----------|--------------------|------------|------------|--------|
| High Byte |                 |        |                                                              |                                                                               |                                                                                                                                                               | Low Byte               |            |            |             |           |           |                    |            |            |        |
| bit15     |                 |        |                                                              |                                                                               |                                                                                                                                                               |                        | bit8       | bit7       |             |           |           |                    |            |            | bit0   |
| H_7       | H_6             | H_5    | H_4                                                          | H_3                                                                           | H_2                                                                                                                                                           | H_1                    | H_0        | L_7        | L_6         | L_5       | L_4       | L_3                | L_2        | L_1        | L_0    |
| bit15     |                 | H_7    |                                                              |                                                                               | 1 Repre                                                                                                                                                       | sents EEF              | PROM abr   | normality; | 0 repres    | ents EEPI | ROM norr  | nal                |            |            |        |
| bit14     |                 | H_6    |                                                              |                                                                               | 1 Repre                                                                                                                                                       | senting t              | he watch   | dog reset  | ; O repre   | sents nor | mal rese  | t                  |            |            |        |
| bit13     |                 | H_5    |                                                              |                                                                               | 1 Representative did not receive instructions from the spectrometer on time; O represents                                                                     |                        |            |            |             |           |           | İS                 |            |            |        |
| bit12     |                 | H_4    |                                                              | normal receipt of spectrometer instructions (UV module only has spectrometer) |                                                                                                                                                               |                        |            |            |             |           |           |                    |            |            |        |
| bit11     |                 | H_3    | 1 represents abnormal pressure; O represents normal pressure |                                                                               |                                                                                                                                                               |                        |            |            |             |           |           |                    |            |            |        |
| bit10     |                 | H_2    |                                                              |                                                                               | 1 The re                                                                                                                                                      | eal-time t             | emperatu   | re contro  | ol value is | greater   | than the  | temperat           | ure contr  | ol set val | lue by |
| bit9      |                 | H_1    |                                                              |                                                                               | more th                                                                                                                                                       | nan 10 ℃               | ; O repres | ents that  | t the real  | -time ten | nperature | e control          | value is n | ormal      |        |
| bit8      |                 | H_0    |                                                              |                                                                               | 1 repres                                                                                                                                                      | sents tha<br>sents abr | iormal ter | mperature  | e control   | communi   | cation; O | represen           | ts norma   | l tempera  | ture   |
| bit7~k    | oit4            | L_7~L_ | _4                                                           |                                                                               | control                                                                                                                                                       | communi                | cation     |            |             |           |           |                    |            |            |        |
| bit3      |                 | L_3    |                                                              |                                                                               | 1 repres                                                                                                                                                      | sents the              | thermist   | or value   | exceeding   | the thre  | shold; 0  | represent<br>fault | s no abn   | ormalities | 5      |
| bit2      |                 | L_2    |                                                              |                                                                               | r represents a neating element mairunction; O represents no rault<br>1 represents the difference between thermistors exceeding the threshold; O represents no |                        |            |            |             |           |           | 10                 |            |            |        |
| bit1      |                 | L_1    |                                                              |                                                                               | abnorm                                                                                                                                                        | alities                |            |            |             |           |           |                    |            |            |        |
| bit0      |                 | L_0    |                                                              |                                                                               | 1 repres                                                                                                                                                      | sents a tl             | nermistor  | open cire  | cuit fault  | 0 repres  | sents no  | fault              |            |            |        |

## 3.7 Data Type

| Variable                      | Data Type      | Unit          |
|-------------------------------|----------------|---------------|
| Modbus address                | byte           | None          |
| Range Value                   | Unsigned short | mg/m3 o r ppm |
| Gas concentration             | float          | mg/m3 o r ppm |
| Chamber pressure              | float          | Кра           |
| Range calibration coefficient | float          | None          |

## 3.8 Communication function code

The following 3 function codes of the Modbus communication protocol can be used to complete communication with the module:

Read from register (one or more)0x03Write instructions to a single register0x06Write instructions to multiple registers0x10

### 3.9 LRC Check Code

When communicating in Modbus ASCII mode, LRC error correction is performed on the data frame, and LRC checksum is calculated on all data bytes (in hexadecimal format) except for the start and end codes. The resulting LRC checksum is placed at the checksum position in the frame format for data frame transmission.

| Address | Function code Start registe |           | Number of Registers | LRC Check Code |
|---------|-----------------------------|-----------|---------------------|----------------|
| 0x2A    | 0x03                        | 0x00 0x05 | 0x00 0x04           | 0xCA           |

(1)LRC Example of checksum calculation (using address 0x2A as an example)

### 3.10 CRC Check Code

The RTU mode includes an error check field, which is based on the cyclic redundancy check (CRC) method to perform on all message contents. CRC field verifies the content of the entire message. Regardless of the parity check method used for a single character message, this CRC check should be applied. CRC contains a 16 bit value consisting of two 8-bit bytes. The CRC field is attached to the message as the last field of the message. When performing this type of attachment, first attach the low byte of the field, and then attach the high byte of the field.. **The CRC high byte is the last byte sent in the message**.

When communicating in RTU mode, CRC error verification is performed on all messages. The sending device calculates the CRC value and attaches it to the message. During the message receiving process, the receiving device recalculates the CRC value and compares it with the actual CRC value received in the CRC field. If the two values are not equal, it indicates that the message has an error.

## 4. Communication example (Taking address 0x80 as an example)

Work must be carried out for at least 30 minutes before calibration. The calibration gas (zero and range points) must be stable. After the module is powered on, send instructions to query the module status until the module temperature is controlled properly (after the bit9 in the status register is 1), and then the module calibration can be carried out.

#### 4.1 Zero Calibration

Inject zero gas (nitrogen) into the module inlet according to the specified flow rate, and after 3 minutes of zero gas supply, send a zero calibration command to the module. After receiving the zero calibration response command from the module, continuously send instructions to check whether the zero calibration is completed. After the zero calibration is completed, the zero calibration operation is completed.

| ASCII | Start Code | Address | Function code | Start register | Number of Registers | LRC check code | End Code |
|-------|------------|---------|---------------|----------------|---------------------|----------------|----------|
|       | :          | 0x80    | 0x03          | 0x00 0x80      | 0x00 0x02           | 0xFB           | CR LF    |
| RTU   |            | Address | Function code | Start register | Number of Registers | CRC Check Code |          |
|       |            | 0x80    | 0x03          | 0x00 0x80      | 0x00 0x02           | 0xDBF2         |          |

Read the concentration value and send the frame as:

#### The response frame is: (concentration result 10.6ppm)

| ΔSCII | Start Code | Address               | Function code | Byte count          | Data Content        | LRC check code | End Code |
|-------|------------|-----------------------|---------------|---------------------|---------------------|----------------|----------|
| ASCII | :          | 0x80                  | 0x03          | 0x04                | 0x41 0x29 0x99 0x9A | 0xDC           | CR LF    |
| DTII  |            | Address               | Function code | Byte count          | Data Content        | CRC check code |          |
| RIU   |            | 0x80 0x03 0x04 0x41 0 |               | 0x41 0x29 0x99 0x9A | 0x44F4              |                |          |

Send the zero correction command frame as follows:

| ASCII | Start Code | Address | Function code | Start register | Data Content | LRC check code | End Code |
|-------|------------|---------|---------------|----------------|--------------|----------------|----------|
|       | :          | 0x80    | 0x06          | 0x00 0x30      | 0x00 0x01    | 0x49           | CR LF    |
| PTII  |            | Address | Function code | Byte count     | Data Content | CRC check code |          |
| RTU   |            | 0x80    | 0x06          | 0x00 0x30      | 0x00 0x01    | 0x5614         |          |

The response frame is:

| مدريا | Start Code  | Address | Function code | Start register | Data Content | LRC check code | End Code |
|-------|-------------|---------|---------------|----------------|--------------|----------------|----------|
| ASCI  | : 0x80 0x06 |         | 0x00 0x30     | 0x00 0x01      | 0x49         | CR LF          |          |
| DTII  |             | Address | Function code | Byte count     | Data Content | CRC check code |          |
| RIG   |             | 0x80    | 0x06          | 0x00 0x30      | 0x00 0x01    | 0x5614         |          |

The command frame for querying whether zero point calibration has been completed is as follows:

| ΔSCII | Start Code | Address               | Function code | Start register | Number of Registers | LRC check code | End Code |
|-------|------------|-----------------------|---------------|----------------|---------------------|----------------|----------|
| ASCI  | :          | 0x80                  | 0x03          | 0x00 0x31      | 0x00 0x01           | 0x4B           | CR LF    |
| PTII  |            | Address Function code |               | Byte count     | Data Content        | CRC check code |          |
| NI O  |            | 0x80                  | 0x03          | 0x00 0x31      | 0x00 0x01           | 0xCBD4         |          |

The response frame is: (Zero calibration completed)

| Δςζιι | Start Code Address Function code |         | Start register | Number of Registers | LRC check code | End Code       |       |
|-------|----------------------------------|---------|----------------|---------------------|----------------|----------------|-------|
| AJCII | :                                | 0x80    | 0x03           | 0x02                | 0x00 0x01      | 0x7A           | CR LF |
| RTH   |                                  | Address | Function code  | Byte count          | Data Content   | CRC check code |       |
| RIO   |                                  | 0x80    | 0x03           | 0x02                | 0x00 0x01      | 0x459A         |       |

## 4.2 Range Calibration

Before range calibration, zero point calibration needs to be performed first. Please use standard gases within the range of 80% -100% of full range for range calibration. Using standard gases with concentrations exceeding the above range for range calibration may affect the accuracy of

subsequent module testing. The range calibration process is as follows:

(1) Send instructions to read the range calibration coefficient of the

gas, and record this coefficient as Span\_ Old;

(2) Inject a known concentration of Con\_ New standard gas;

(3) After the gas concentration reading measured by the module

stabilizes, record the measured gas concentration value as Con\_ Old;

(4) Calculate the coefficient Span after gas range calibration\_ New=

Con\_ New \* Span\_ Old/Con\_ Old;

(5) Send instructions to write the coefficient Span after gas range

calibration\_ New;

Read the range calibration coefficient and send the frame as:

| معربا | Start Code | Address | Function code | Start register | Number of Registers | LRC check code | End Code |
|-------|------------|---------|---------------|----------------|---------------------|----------------|----------|
| ASCII | :          | 0x80    | 0x03          | 0x00 0x32      | 0x00 0x02           | 0x49           | CR LF    |
| PTII  |            | Address | Function code | Start register | Number of Registers | CRC check code |          |
| RIG   |            | 0x80    | 0x03          | 0x00 0x32      | 0x00 0x02           | 0x7BD5         |          |

The response frame is: (Range calibration coefficient is 1.0, i.e. Span-Old=1.0)

| ΔSCII | Start Code | Address | Function code | Byte count | Data Content        | LRC check code | End Code |
|-------|------------|---------|---------------|------------|---------------------|----------------|----------|
| ASCII | :          | 0x80    | 0x03          | 0x04       | 0x3F 0x80 0x00 0x00 | 0xBA           | CR LF    |
| PTII  |            | Address | Function code | Byte count | Data Content        | CRC check code |          |
|       |            | 0x80    | 0x03          | 0x04       | 0x3F 0x80 0x00 0x00 | 0x66C7         |          |

If the standard gas concentration is 98.0ppm (i.e. Con New=98.0), read the concentration value and send the frame as:

| ASCII | Start Code | Address | Function code | Start register | Number of Registers | LRC check code | End Code |
|-------|------------|---------|---------------|----------------|---------------------|----------------|----------|
| 7.50  | :          | 0x80    | 0x03          | 0x00 0x80      | 0x00 0x02           | 0xFB           | CR LF    |
| RTU   |            | Address | Function code | Start register | Number of Registers | CRC check code |          |
| KI U  |            | 0x80    | 0x03          | 0x00 0x80      | 0x00 0x02           | 0xDBF2         |          |

The response frame is: (concentration result 100.0 ppm, i.e. Con-Old=100.0)

|       | Start Code | Address | Function code | Byte count | Data Content        | LRC check code | End Code |
|-------|------------|---------|---------------|------------|---------------------|----------------|----------|
| ASCII | :          | 0x80    | 0x03          | 0x04       | 0x42 0xC8 0x00 0x00 | 0x6F           | CR LF    |
| PTII  |            | Address | Function code | Byte count | Data Content        | CRC check code |          |
| RIO   |            | 0x80    | 0x03          | 0x04       | 0x42 0xC8 0x00 0x00 | 0xFEBD         |          |

The instruction frame for writing the range calibration coefficient is as follows: (Write range calibration coefficient Span-New =  $98.0 \times 1.0/100.0 = 0.98$ )

| Δςςιι | Start Code | Address | Function code | Start register | Number of<br>Registers | Byte count | Data Content        | LRC check code | End Code |
|-------|------------|---------|---------------|----------------|------------------------|------------|---------------------|----------------|----------|
| ASCI  | :          | 0x80    | 0x10          | 0x00 0x32      | 0x00 0x02              | 0x04       | 0x3F 0x7A 0xE1 0x48 | 0x56           | CR LF    |
| RTU   |            | Address | Function code | Start register | Number of<br>Registers | Byte count | Data Content        | CRC check code |          |
| KI U  |            | 0x80    | 0x10          | 0x00 0x32      | 0x00 0x02              | 0x04       | 0x3F 0x7A 0xE1 0x48 | 0xB9F7         |          |

The response frame is:

| ASCII    | Start Code | Address | Function code    | Start register | Number of<br>Registers | LRC check code | End Code |
|----------|------------|---------|------------------|----------------|------------------------|----------------|----------|
| , is chi | :          | 0x80    | 0x10             | 0x00 0x32      | 0x00 0x02              | 0x3C           | CR LF    |
| RTU      |            | Address | Function<br>code | Start register | Number of<br>Registers | CRC check code |          |
|          |            | 0x80    | 0x10             | 0x00 0x32      | 0x00 0x02              | 0xFE16         |          |

## 5. Software operation interface

| NDIR            |                                     |                                      |                 |                                  |                             |           |            | -     |           |
|-----------------|-------------------------------------|--------------------------------------|-----------------|----------------------------------|-----------------------------|-----------|------------|-------|-----------|
| COM Set<br>COM: | Module State<br>Module State:       | Running Code: 0x<br>Modbus Addr.: 0x |                 | Bug status:<br>Read Module Addr. | Measuring I<br>CH1:<br>CH2: | lange     | ppm<br>ppm | Read  | Rance     |
| Calibration     |                                     | Mearsuring Data                      |                 |                                  | CH3.                        |           |            | Filen |           |
|                 | CH1 FS CAL factor CH2 FS CAL factor | NO.                                  | Tme             | Ar Press                         | CH1 Value                   | CH2 Value | CH3 Value  |       | Unt       |
| ZERD CAL        | CH3 FS CAL factor                   |                                      |                 |                                  |                             |           |            |       |           |
| Data Save       |                                     |                                      |                 |                                  |                             |           |            |       |           |
| Save Addr.:     | D:\\<br>Browse                      | 1 Hz Set Acquis                      | stion Frequency | Rest Firm                        |                             |           | Clear      | Data  | Save Data |

## 6. Security protection and precautions

① Before using the module, it should be confirmed that the external power supply is 12V DC and reliably connected.

② In case of unexpected events during use, power should be cut off first.

③ After using the module, it should be cleaned with clean air for at least 20 minutes to prevent residual gases from corroding the chamber.

④ When the module is idle for a long time, it should be powered on once a month for no less than 4 hours.

## 7. Simple faults and troubleshooting methods

| Fault phenomenon                                           | Possible reasons                                                                                 | Troubleshooting                                                                                                              |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| After connecting 12V DC power, the module does not respond | 12V power supply is abnormal, or there is a problem with the power cord circuit                  | Measure the 12V voltage output to ensure normal voltage;<br>Measure whether the power cord is reliably connected.            |
| Response time for introducing standard gas>3 minutes       | <ol> <li>Air path leakage</li> <li>Insufficient pressure in the standard gas cylinder</li> </ol> | <ol> <li>Check and confirm that there is no air leakage in<br/>the air circuit.</li> <li>Replace the standard gas</li> </ol> |
| Serial port produces garbled code                          | Baud rate selection error                                                                        | Baud rate selection 115200                                                                                                   |