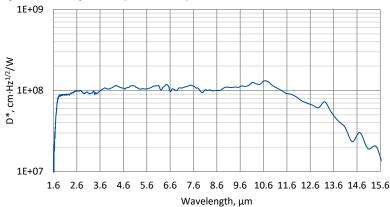


NIGO SYSTEM


PCAS-2TE-13-0.1×0.1-TO8-wZnSeAR-70 detector

PCAS-2TE-13-0.1×0.1-TO8-wZnSeAR-70 – ENGINEERING SAMPLE

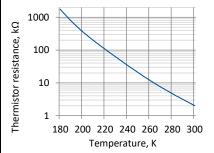
Type II superlattice, two-stage thermoelectrically cooled, photoconductive detector

PCAS-2TE-13-0.1×**0.1-TO8-wZnSeAR-70** is a Type II superlattice two-stage thermoelectrically cooled IR photoconductor, with excellent parameters. Photoconductive detector should operate in optimum bias voltage and current readout mode. Performance at low frequencies is reduced due to 1/f noise. 3° wedged zinc selenide anti-reflection coated window (wZnSeAR) prevents unwanted interference effects. For detection of CW radiation, using of optical chopper system is recommended. This detector does not contain mercury or cadmium and is compliant with the RoHS Directive.

Spectral response (T_a = 20°C)

Exemplary spectral detectivity, the spectral response of delivered devices may differ.

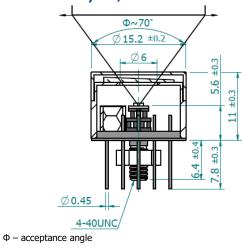
Specification (T_a = 20°C)

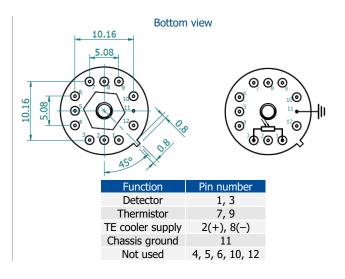

Parameter	Detector type
	PCAS-2TE-13-0.1×0.1-TO8-wZnSeAR-70
Active element material	epitaxial superlattice heterostructure
Cut-on wavelength λ_{cut-on} (10%), µm	1.6±0.2
Peak wavelength λ_{peak} , μ m	10.7±0.3
Cut-off wavelength $\lambda_{\text{cut-off}}$ (10%), µm	15.0±0.3
Detectivity D*(λ_{peak} , 20 kHz), cm·Hz ^{1/2} /W	~1.2×10 ⁸
Current responsivity $R_i(\lambda_{peak})$, A/W	~0.7
Time constant T, ns	~3
Resistance R, Ω	~28
Bias voltage V _b , V	typ. 0.5
1/f noise corner frequency f _c , Hz	typ. 20k
Active element temperature T _{det} , K	~230
Active area A, mm×mm	0.1×0.1
Package	TO8
Acceptance angle Φ	~70°
Window	wZnSeAR

Two-stage thermoelectric

cooler parameters

Thermistor characteristics


Features


- Wide spectral range from 1.6 to 15.0 µm
- High responsivity
- Excellent linearity
- Environmentally friendly

Mechanical layout, mm

Dedicated preamplifiers

standard MIP

small SIP-TO8

Precautions for use and storage

- Heatsink with thermal resistance of \sim 2 K/W is necessary to dissipate heat generated by 2TE cooler.
- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations:
 - irradiance with CW or single pulse longer than 1 μs irradiance on the apparent optical active area must not exceed 100 W/cm²,
 - irradiance of the pulse shorter than 1 µs must not exceed 1 MW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.